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Abstract—The gravity-induced flow in a long horizontal space of annular cross-section insulated laterally
and with the two ends maintained at different temperatures was studied analytically. The velocity and
temperature distribution in the central portion of the space was derived based on a perturbation analysis
in the Rayleigh number. The Nusselt number for axial heat transfer was shown to depend on the Rayleigh
number, the two geometric aspect ratios r,/r, and L/rg (inner radius/outer radius and length/outer radius)
plus the conducting properties of the two cylindrical walls. The analysis was performed for the case where
the horizontal space is filled with incompressible fluid and the case where the space is filled with a porous
material saturated with an incompressible fluid. The limit r; — r, was used finally to derive expressions
for the flow and temperature fields between two vertical planes subjected to a net temperature difference
in the horizontal direction parallel to the planes.

NOMENCLATURE z, axial coordinate, equation (4b) and Figs. 1
a_,,a,, constants, equation {23); and 5;
b; o,  wall thickness [m]; { %, dimensional quantities;
¢_ ¢y, constants, equation (49); V2, Laplacian operator in cylindrical
fuu» functions, equations (51), (52) ‘coordinates,
and {56-39); 8t 18 18 @&
F,...1» functions, equations (25), (26), mt i Tt
(29) and (36-38);
g, gravitational acceleration {m/s*]; Greek symbols
h, half-height of vertical W‘(‘}HS’ Fig. 5 a, thermal diffusivity of incompressible fluid
k, the.rmal conductivity of mcom.pressxb]e or saturated porous medium [m?/s];
fluid or saturated porous medium B, coefficient of volumetric thermal expansion
ko,  thermal conductivity of cylindrical walls; [K-1];
K,  permeability [mzj_; 3, annulus thickness ratio, {rg—r;)/r,;
K,,K,, constants, equations (17) and (46); 0, tangential direction, Fig. 1
Nu, Nusselt numbe'r, equation (27); i viscosity [Kg/(ms)];
P, pressure, equation (7); v, kinematic viscosity [m?/s];
Pr,  Prandtl number, v/a; 0 radii ratio r,/r, :
Q,  axial heat transfer rate [W]; 5 densi i
. s . p- ensity [Kg/m?].
r, radial position, equation (4a);
rio,  radii of concentric cylinders;
R,y wall thermal resistance parameter, Subscripts
equations {(12a,b); i inner radius;
Ra, Rayleigh number, equations (9) and (42}; o, outer radius;
t, spacing between vertical walls [m]; 0,1,2, zeroth, first, second ordér approximation.
T, temperature, equation (6);
AT, end-to-end temperature difference;
u,p,w, velocity components, equation (5) and Fig. INTRODUCTION
1; NATURAL convection heat transfer in insulated
X, horizontal (lateral) coordinate, equation horizontal conduits subjected to an end-to-end
(32)and Fig. 5; temperature difference has only recently come into
¥ vertical coordinate, equation {33) and Fig. focus. The different end temperatures produce a
5; horizontal counterflow pattern in which colder fluid
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flows along the bottom of the conduit and warmer
fluid flows in the opposite direction along the top.
Hong [1] studied numerically the effect of this
counterflow on the temperature distribution and
concentration of thermal stresses in the conducting
wall of round pipes. Bejan and Tien [2] studied the
same phenomenon analytically by means of a
perturbation analysis valid for small Rayleigh num-
bers. They showed that as the Rayleigh number
increases the axial counterflow in round pipes is also
accompanied by a secondary flow composed of
spiraling eddies in each quadrant of the pipe cross-
section. A similar flow pattern prevails in a horizon-
tal cylinder filled with a porous medium subjected to
an end-to-end temperature difference [3].

In an earlier three-paper sequence, Cormack et al.
[4.5] and Imberger [6] studied the natural con-
vection in a slender two-dimensional cavity with
differently heated end walls. Their work was aimed at
describing the spreading of thermal polution through
estuaries and other shallow waters. Bejan and Tien
[7] proposed an integral method to account for the
flow in the vicinity of open or closed ends of parallel-
plate horizontal channels with different end tempera-
tures. Bejan and Tien applied the same technique to
the study of natural convection through horizontal
porous layers with permeable or impermeable end-
walls maintained at different temperatures [37.

The objective of this work is to study analytically
the heat-transfer mechanism by natural convection
through a long conduit of annular cross-section,
subjected to an end-to-end temperature difference.
This free connection phenomenon has applications
in the study of thermal stresses in the walls of
horizontal conduits of annular cross-section. Also,
the horizontal heat leak induced by the free
connection mechanism is a critical parameter in the
design of cryogenic systems.

In the first part of this article we consider the case
of an incompressible fluid bounded by two horizon-
tal cylinders. A perturbation analysis in the Rayleigh
number as a small parameter leads to a set of
asymptotic expressions for the velocity and the
temperature field in the annular cross-section. The
Nusselt number for ‘axial heat transfer is estimated,
showing the effect of radii ratio ry/r; and the effect of
thermal conduction through the two cylindrical
walls. The limit r, - r, is finally used to derive the
natural convection pattern in a parallelepiped with
the height h much greater than the horizontal
thickness .

The second part of this paper deals with natural
convection through a porous medium bounded by
two horizontal cylinders. Analytically, the problem is
similar to the one treated in the first part. The
velocity and temperature distributions and the
Nusselt number for axial heat transfer through the
porous medium are derived based on a perturbation
analysis. Applying the limit r,—r,, this solution is
used to derive the horizontal convective pattern in a
porous layer of rectangular cross-section with /1 > t.

SPACE FILLED WITH INCOMPRESSIBLE FLUID

The annular space and its dimensions are shown
on Fig. 1. The horizontal cylindrical surfaces are
adiabatic. However, each cylinder is modeled as a
conducting sheet of zero thickness, capable of
conducting heat in the tangential and axial direc-
tions. A net temperature difference AT is maintained
across the two ends of the annular space.

End region
SN /
N N e
T-1
N
~
-
Core region < i }
~

End region

FiG. 1. Horizontal space bounded by concentric horizontal
cylinders with different end temperatures.

{a) Formulation of the problem
The equations governing conservation of mass,
momentum and energy in the steady state are
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The cylindrical coordinate system r.8,z is shown in
Fig. 1. Equations (1)}-(3) have been put into non-
dimensional form by defining the following dimen-
stonless variables.

{4a,b)
(5a,b,c)

{r, 2) = (r.2¥%/r,.

(u, v, w) = (u, v, w)*r, /o,
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T = T*/AT, (6)
P = P*r%/(op). )

The asterisks denote the dimensional quantities of
this problem. The temperature difference T* was
assumed zero at z = 0. The fluid filling the annular
space is incompressible, subject to the Boussinesq
approximation by which density differences are due
solely to temperature differences

p = pol1-B(T*~TX)], (8)

where subscript 0 denotes the properties of a
reference state. The convective flow intensity is
governed by the Rayleigh number defined as

gpr2AT

Ra = . 9)
o

We are interested in determining the velocity field
(u,,w) and the temperature field T by solving
equations (1)—(3) subject to velocity and temperature
boundary conditions along the walls of the annular
space. In the radial direction, the boundary condi-
tions are

(u,p,w) =0, at r=pl, (10a,b)
2T 1 &1 er
F-F;E*a*é?:— ,~~5’:—, at r=p, (llaj)
8T 8°*T oT
‘6;2“4“'5(9—2: o“aT, at 1’=], (llb)

where p = ry/r,. Equations {11a,b) are the tempera-
ture boundary conditions around the concentric
cylindrical surfaces. Parameters R, R, are the dimen-
sionless thermal resistances of the two walls,

2
kr?

R. = 4
YO (kb

{12a,b}

where k; o is the wall conductivity and b, , the wall
radial thickness assumed much smaller than either r,
orr,.

As shown in all previous studies [1-7], in long
horizontal spaces with different end temperatures the
velocity field is independent of axial position over
the central portion of the space (the core region).
The effect of the two end-walls on the velocity field is
restricted to two small segments of the long
horizontal space located near the two ends. In what
follows, we seek expressions for u,u,w, T in the core
region only. The end-wall effect on the natural
counterflow through the annular space will be
discussed in the closing section of this paper.

(b) The perturbation method

An analytical solution to equations (1}-(3) is
obtained by first eliminating the pressure terms
among the three momentum equations (2a,b,c). This
is done by differentiating (2a) with respect to 6 and z
and combining the results with the partial derivatives
of equations (2b,c) with respect to r. The resulting

momentum conditions are

0 1( 6u+ué’u+ ou vz)
Of1( ou vou o4 v
e\ rae Ve

V2+u+28v]
T

6{ 1 ( 6v+v 8v+ 6v+uv‘
_E\r—f’;uér. r 00 W@z r)

aT eT
=Ra(sin9~é—é——rcos!9———> (13)

or
0 1
{vzw_*.(u
ar Pr

6w+v 6w+ ow 1
P — — W_
ar r 08 oz /|

( 0u+v 6u+ ou vz>"
X|u—t-—4+w——-
v ar r a0 0z r
eT
= Rasin ¢ —. (14)
0z
The perturbation method consists of developing
u,v,w, T in power series in the Rayleigh number,

{u,0,w, T) = (u,0,w,T)y + Ra(u,v,w, T),

+Ra*(u,o,w, T +.... {15)

By introducing expressions (15) into equations (1),
(13), (14) and (3) and identifying the coefficients of
each power of Ra leads to an infinite set of equations
which can be solved analytically. The method of
solution for an annular space is identical to the one
employed by Bejan and Tien [2] in analyzing the
natural counterflow through long horizontal pipes.
In fact, the round pipe solution corresponds to the
special case p =0 of the more general solution
developed below.

The zeroth order approximation to the velocity
and temperature field describes the state of solid
body conduction,

(u,0,2)g =0, (16)
TO = KIZ+K2‘ (17)

If Ra =0, constants K,,K, are determined from the
end temperature conditions T,(0) = 0 and Ty(L/r,)
= 1 to yield

Ky=r/L, K,=0. (18)
The first order approximation is
(), =0, 19)
plus two equations for w, and T,.
0 .
—(V?w,) = K, sinf, (20)
or
V2T, = K, w,. @21
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The solution to equations (20) and (21) is
straightforward [2] and, for brevity, the details are
omitted. The resulting first order temperature and
axial velocity distributions are

1
w, = +K sin O[pZA—(l+p2)r+r3J, (22)
P
) 1
T, =%iK3sinb|la_,—+a,r+1ip*inr
r

-émpwwrﬂ 23)

Coefficients a_ ,a, represent complex algebraic ex-
pressions in p, R;, R, determined from substituting
equation (23) into the temperature boundary con-
ditions (11a,b).

The first order approximation to the velocity field
reveals a horizontal counterflow caused by the
different end temperatures. Figure 2 shows a series of
axial velocity profiles along the vertical diameter of
the circular cross-section for a range of values of p.
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Fi1G. 2. Axial velocity distribution along a vertical diameter
in the core region.

As the radii ratio approaches unity the axial
counterflow decreases rapidly. The first order cor-
rection to the temperature field, T;, is symmetric
about the horizontal diameter of the annulus.
Warmer fluid occupies the top half of the annular
cross-section, flowing towards the cold end. Figure 3
shows the temperature distribution in the first
quadrant for different ratios p in two extreme cases.
The left column illustrates the case where both
cylindrical surfaces are insulated, ie. too thin to
conduct heat appreciably (R;, R,— o). The right
column corresponds to the opposite case in which
the two walls are infinitely conducting (R;, R, = 0).
Figure 3 shows how increasing the radii ratio p
and/or reducing the thermal resistance of the two
walls has the effect of equalizing the fluid tempera-
ture in the cross-section, thus quenching the axial
counterflow pattern.

(@) Ri,Ro—* 0

(f) R;,R,=0
p=04

(g)R{,Ro=0
p =086

(D R;,R,=>®
2 p=08 f
I
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F1G. 3. Temperature distribution over the annulus in the
core region. The numbers on the figure indicate the value of
96T,/K3.

(hR; ,R,=0
p=08

We also notice that the isotherms of Fig. 3 are not
horizontal. In fact, at a constant height, the regions
closer to the vertical diameter are warmer than the
regions neighboring the outer wall. The relative
temperature difference gives rise to an eddy in each
quadrant, clockwise in the first quadrant shown in
Fig. 3. This secondary flow can be determined
analytically by carrying out the perturbation analysis
beyond the first order correction, equations (19), (22)
and (23). The second order correction has the form

(w, T), =0, (24a,b)
u, = K?cos20F ,(r), (25)
v, = K}sin20F ,(r), (26)

where functions F,(r) and F,(r) are determined by
solving the two equations (1) and (13).

(c) Axial heat-transfer rate

The purpose of the perturbation analysis pre-
sented above is to permit estimation of the Nusselt
number for axial heat transport through the annular
space. If Q is the net axial heat-transfer rate in the
negative z direction, the Nusselt number can be
defined as

Q

T (L= pP)rkAT @

Nu
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An energy flux analysis across any annular cross-
section in the core region yields

1 AT
Ny=—— ——wT jrdrdf. {28)
n(l1—p?) Jo Jo \ 0z

Expression (28) can now be evaluated using the
perturbation solution for w and T,

3p.2 (1
——I&{{—a—f F (r)Fp(rirdr, (29)
64(1—p% ],

where F, and F; stand for two functions describing
the radial variation of w, and T}, equations (22) and
(23). Since the secondary components w, and T, are
zero, equations (24ab), their contribution to axial
heat transport is zero. The integral appearing in the
convection term of expression (29) is negative since,
for a given r, F, and F; have opposite sign (see Figs.
2 and 3).

The convection contribution to the Nusselt num-
ber depends on g, R; and R, ; however, the complete
expression showing this dependence is too lengthy to
be reproduced here. We evaluated the Nusselt
number in four limiting cases summarized on Fig. 4.
The top curve shown in the figure corresponds to the
case where both cylindrical walls are adiabatic (R;,
R,— o). I, in addition, p equals zero, expression
(29) is greatly simplified,

Nu=K, —

K3iRa?
23040

Equation (30) serves as reference to the Nu curves of
Fig. 4 and is identical to the Nusselt number result
obtained by Bejan and Tien [2] for horizontal
adiabatic pipes with different end temperatures. The

Nu=K, + (30)

T T TTTTIT

)

-

02

23 040
(X, Ra)2

b

3
10

T T T TTTTY

-4
o
o]

FI1G. 4. Nusselt number vs radii ratio p for horizontal
annular space filled with incompressible fluid.

bottom curve of Fig.4 shows the value of 23040 (Nu
— K, )/(K3Ra?) for annular spaces bounded by two
isothermal cylinders. The two intermediate curves
correspond to the case in which one of the cylinders
is adiabatic and the other is isothermal.

The convective part of the Nusselt number
decreases sharply as the radii ratio approaches unity
(see Fig. 4). The sharp decrease is due to the fact
that, simultaneously, the axial velocity approaches
zero and the temperature becomes isothermal over
the cross-section. The heat-transfer rate is also
reduced as one or both walls become more conduct-
ing. The two intermediate curves approach one
another when p — 1 since, in this limit, it makes little
or no difference if the adiabatic wall is on the outside
or on the inside boundary of the annular cross-
section.

(d) Horizontal counterflow between two vertical
plates

As the difference t = r,—r; becomes much smaller
than r,, the two regions located in the vicinity of 8
=0 and #=n in the annular space of Fig. 1
resemble the space formed between two tall vertical
plates, with the edges z* =0, L kept at different
temperatures. The velocity and temperature distri-
bution between the two vertical walls with cor-
rections up to terms of Ra? can be derived
immediately based on the perturbation solution
obtained previously. For instance, applying the
calculus of limits as p — 1, the axial velocity becomes

w = —~3K,Rayx{d —x), {31)
where
x=1-r, (32)
y=40z=sind, (33)
& =t/h. (34)

Everywhere in expressions (31)-(34), the half-height
i replaces r, used as length scaling factor until now.
We find that at any y the axial velocity profile is
parabolic. The axial velocity is zero over the horizontal
midplane of the box formed by the two vertical walls. If

T=0

F1G. 5. Horizontal channel bounded by two vertical plates
with different end temperatures.



924 ApriaN BesaN and CHANG-LIN TiEn

the box is closed at the top and bottom, the velocity is
zero at y= +1. Consequently, expression (31}
overestimatestheaxial velocity near thetopand bottom
walls, over vertical distances of the order of .

The temperature distribution is

T = K, z+K, +1K?RayF(x), 35)

where Fr(x) depends on the conducting properties of
the two vertical walls. For the extreme cases
illustrated in Fig. 4, F; assumes the following
simpler forms:

Fy =118%,  both walls insulated, (36)
Fp =183 ~23x% +x%),
both walls isothermal, (37)
Fp=36%-26x+x%),
one wall insulated, the other isothermal. (38)

These findings agree qualitatively with the isother-
mal patterns shown in Fig. 3 for p = 0.8.

Expressions (31) and (35) can finally be used to
estimate the Nusselt number for axial heat transfer
through the box shown in Fig. 5. The method
follows identically the steps outlined in the preceding
section and is not repeated here.

SPACE FILLED WITH POROUS MEDIUM

We will now examine the horizontal counterflow
induced by different end temperatures when the
annular space of Fig. 1 is filled with a porous
medium. The permeability K is assumed uniform,
independent of orientation. The medium is saturated
with a quasi-incompressible fluid which obeys the
Boussinesq approximation, equation (8). The hori-
zontal cylindrical surfaces are impermeable conduct-
ing sheets characterized by resistances R, R, defined
in equations (12a,b).

As in the preceding section, the heat transfer
between the annular space and its environment is
assumed negligible, except over the two end plates
maintained at constant but different temperatures.

(a) Formulation of the problem

The analysis leading to expressions for the
velocity, temperature and Nusselt number in the
annular space follows the procedure presented in the
preceding section. For this reason, many details will
be skipped allowing us to focus on features charac-
teristic to natural convection through porous media.

Assuming that Darcy’s law applies, ie. the
Reynolds number based on pore diameter is less than
one [8], the continuity, momentum and energy
equations are

u O0u 10dv ow

b e == (), 39

r+6r+r69+ﬁz 39)
P .

u = ~9—+ RaTsin 0, (40a)
oy

LOP o ocn 40b
)= — — ’
. ~ 5+ RaTcos (40b)
aopP
W= e (40c¢)
0z
3T v éT orT
Yt — —— + W = YT 41
or r 8 az

The dimensionless variables appearing in the above
equation, r, z, , v, w, T and P have been defined in
equations {4)-(7). The Rayleigh number for this
problem contains the permeability K,

a=""0000 (42)

We are again interested in the natural convection
pattern in the core region, ie. away from the two
ends. The boundary conditions throughout the core
region are expressed in equations (10), (11).

(b) The perturbation method
Eliminating the pressure terms between the three
momentum equations yields

du 8 . aT aT
— ——(rv) = Ra| sinf— —rcos — |, (43)
88 or L a8 ar

~

ow o orT
—— = Rasin @ —.
or ¢z

(44)

The power series in Ra, expressions (15), are
substituted into equations (39), (41), (43) and (44).
Collecting the terms multiplying the same power of
Ra provides the necessary set of equations for
determining the successive corrections to the velocity
and temperature field in the core region. The result
is:
zeroth order

(u,v,w)e =0, (45)
To=K,z+K,; (46)
first order

(. v); =0, 47}
w, = —K,rsinf; (48)
T1=Kfsin9(c_1%+('1r—%r3>: (49)

second order
(w,T), =0, (50)
u, = KZcos26f,(r), {51)
b, = K2sin 20f,(r). (52)

Coefficients ¢_,, ¢, appearing in equation (49)
depend on p, R,, R, and are determined by applying
the temperature boundary conditions (11a,b). Func-
tions f,, f, describing the secondary flow can be
determined by solving the ordinary differential
equations obtained from substituting u,, v, into
equations (43) and (44). However, of the per-
turbation solution presented above only the zeroth
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and first order approximation contribute to the axial
heat transport through the annular porous medium.

As a first approximation, the axial temperature
gradient constant K, equals r, /L. This value is
expected to decrease steadily as Ra increases,
depending also on whether the two end plates are
permeable or not.

0
B Ri,Ro—-oo
|
- R;=0, Rg=>
- L
z:'| < - R; #00, Rp=0
o 10"
[=] -
ol
®iv [
~ r Rj,Ry=0
-2
10 |
-3 |
IO L 1 1 1 1 i 1 A
6] [
P

F1G. 6. Nusselt number vs radii ratio p for horizontal annular
space filled with saturated porous medium.

(c) Axial heat-transfer rate

The Nusselt number for axial heat transport was
defined in equation (27). Substituting the per-
turbation solution for w and T into equation (28)
yields

Nu =K, +KjRa®[{c_,+1(1 +p?)c,
—as(l+p7+p]. (53)

As mentioned previously, ¢_, and ¢, depend on the
wall resistance parameters R;, R,. Figure 6 shows the
variation of Nu with the radii ratio p in four extreme
cases regarding the conducting properties of the
concentric cylinders. As reference we used the case of
a round pipe (p = 0) with non-conducting wall, for
which the Nusselt number becomes

Nu = K, +%K3Ra% (54)

Comparing Fig. 6 with Fig. 4 we observe that, as r;
- r,, the Nusselt number for the porous medium
does not decrease as abruptly as for an annular
space filled with incompressible fluid. There is a
reason for this, namely, the narrowing of the annular
space has no effect on the first order axial velocity
which is independent of the shape of the vertical
cross-section [see equation (48)]. If both cylindrical
walls are non-conducting (R;, R, — o), the Nusselt

number increases as p — 1; however, the axial heat-
transfer rate Q decreases on account of the decreas-
ing cross-sectional area, equation {27).

(d) Horizontal
plates

We conclude the study of natural convection
through a horizontal annular space filled with
porous material by making again the observation
that the perturbation solution derived in (b) above
contains information relevant to the parallel plate
geometry sketched in Fig. 5. Applying the calculus of
limits as p — 1 and using transformations (32) and
(33) we obtain the following expressions for the axial
velocity and temperature pattern in a horizontal
porous layer of rectangular cross-section (1 > t):

counterflow between two vertical

w = —K,Ray,
T = Kyz+ K, + KiRayfr(x).

(55)
(56)

As before, h replaces r, as a length scaling factor in
the definitions of w, z, y, x and Ra. Function f;(x)
depends on ¢_,, ¢, as shown in expression (49). In
the three limiting circumstances singled out through-
out this study, f7 is

fr=1-20+30% =1,
both walls insulated, (57)
fr=x(@-x),
both walls isothermal, (58)
fr =300 =x%),
one wall insulated, the other isothermal, (59)

where 6 =t/h. One can finally combine equations
(55) and (56) to estimate the net heat-transfer rate in
the horizontal direction through the porous layer.
The Nusselt number will depend on three para-
meters, Ra, t/h and K, (or h/L).

CONCLUDING REMARKS

In order to understand the mechanism of natural
convection heat transfer in long horizontal spaces
with different end temperatures, we studied analyti-
cally the natural counterflow in a space of annular
cross section. Two situations have been considered,
the case when the annular space is filled with an
incompressible fluid and the case when the space is
filled with a porous material saturated with an
incompressible fluid.

In both cases, perturbation analyses in the
Rayleigh number led to expressions for the velocity
and temperature distributions in the middle portion
of the annular space. This is the core region situated
at some distance away from the two ends. The
primary flow caused by the different end tempera-
tures consists of two horizontal streams in counter
current flow, the warmer branch flowing towards the
cold end through the upper half of the cross-section.
The velocity and temperature field in the core region
is similar to the one found in horizontal round pipes
[1-3] and flat ducts (h « t) [3-7].
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The Nusselt number for axial heat transfer was
shown to depend on the Rayleigh number (Ra) plus
two geometrical parameters, the radii ratio (p) and
the axial temperature gradient constant (K,). The
Nusselt number increases as both Ra and K,
increase. It was shown that the axial heat-transfer
rate decreases as one or both cylindrical walls
become more conducting.

The solution for convection in a horizontal
annular space was placed in the limit r,—»r, to
obtain closed form expressions for velocity and
temperature between two vertical walls exposed
horizontally to a finite temperature difference. The
natural convection pattern in the geometry of Fig. 5
was shown to depend on the Rayleigh number based
on the vertical dimension (h), the axial temperature
gradient K, (of the order of h/L) and the cross-
section aspect ratio t/h. The vertical wall thermal
conductance was shown to be an effective means of
reducing the axial heat-transfer rate through the
horizontal space.

It is worth commenting on the axial temperature
gradient constant K, which is a crucial element of
the natural convection pattern discussed in this
study. If the horizontal space is long (r,/L « 1 or
h/L <« 1) the core region fills almost the entire space.
If the Rayleigh number is moderate so that at any =
the temperature difference between the upper (warm)
stream and the lower (cold) stream is considerably
smaller than the end-to-end AT, the zeroth order
contribution T,(z) dominates the core temperature
distribution. Under these circumstances the solid
body conduction values for K,. K, shown in
expression (18) are adequate.

As the Rayleigh number increases, the temperature
difference at any z increases causing a decrease in the
bulk temperature gradient K,. We can no longer
assume, as in what led to equation (18), that T =0
at z=0and T =1 at = = L/r, since, at any z, the
temperature varies considerably across the annular
cross-section. The functions K, (Ra, L/r,) and K,
(Ra, L/r,) can only be determined by solving the
Navier—Stokes equations in the two end regions and
matching the solution with the core solution pre-
sented in this study.

There are certain ways in which an end solution
can be found. Studying the flow in horizontal
rectangular cavities (flat ducts, h « t), Cormack et al.
[4] developed a perturbation solution in h/L for the
flow around a square end. The solution, however, is
prohibitively complex to be carried out analytically.
A much more expedient analytical method was
employed by Bejan and Tien [7] for the flow in the
two end regions of the horizontal cavity studied by
Cormack et al. [4,5] and Imberger [6]. The method
consists of integrating the momentum and energy
equations in the two end regions, using velocity and
temperature profiles matching the core solution at
the imaginary cross-sections where the end regions
and the core region come in contact. The momentum
and energy integral conditions prevailing in the two

end regions provide the necessary information for
estimating the unknown constants K, and K,, once
Ra and the aspect ratio h/L are specified. The
integral method is quite flexible as shown by the
authors who have also applied it to the flow through
an open end (horizontal flat duct communicating
with a large reservoir) [9] and to the flow near the
end wall (permeable and impermeable} of a porous
medium bounded by a horizontal cylinder [3].

An even simpler method which allows one to esti-
mate the first correction in Ra and L/r, beyond the
zeroth order solution for K, K, of equation (18) is
the pinned-core-solution approximation [ 7]. Accord-
ing to this method, even when the temperature varies
across the annulus, the coldest point in the z =0
cross-section approaches T = 0, whereas the war-
mest point at z = L/r, approaches T = 1. As shown
in Fig. 3, depending on p, R, R,, the temperature
varies appreciably across the annulus. However, once
p, R;, R, are specified, expressions (23), (35), (49) and
(56) may be used to locate the points where the
cross-section temperature is minimum and maxi-
mum. Undoubtedly, the two points lie on the
vertical diameter, the coldest in the lower half at 6 =
—7/2 and the warmest at 0 = r/2. Then, writing

T,

min,z =0 = ()’ (60)

T;mxx‘::[_ o 1, (61)
corresponds to pinning the core solution to the
externally imposed temperature difference. Equations
(60) and (61) provide a system for determining K,
and K, as functions of Ra and L/r,. In the Ra— 0
limit' these findings will be identical to expression
(18).

It is appropriate to conclude this discussion with a
comment regarding the domain in which the asym-
ptotic results developed in this study are valid. From
the mathematical formulation of the problem, the
theory is strictly valid in the limit Ra — 0. Due to the
algebraic complexity of the series solutions provided
by the perturbation analysis in Ra small, only the
first convective terms of two solutions (incompres-
sible fluid, saturated porous medium) were derived.
An approximate upper bound to the Rayleigh
number for which the asymptotic solution applies
can be obtained from the condition that the
convective term must never exceed the conductive
contribution in the make-up of the Nusselt number,
equations (30) and (54). Thus, on an order of
magnitude basis, we find

O(RaK,) < 152, for incompressible fluid, (62)

O(RaK,)< 3.7, for porous medium. (63)

Since in the conduction dominated regime the axial
temperature gradient parameter K, is of order r,/L,
equation (18), criterion (62, 63), is expressed solely in
terms of a modified Rayleigh number based on the
physical gradient AT/L, namely Rar,/L. This obser-
vation suggests that the asymptotic results presented
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in this article are also applicable in the limit r,/L — 0
with Ra arbitrary but finite, such that the product
Rar /L obeys criterion (62, 63).
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CONVECTION NATURELLE DANS UN ESPACE HORIZONTAL
LIMITE PAR DEUX CYLINDRES CONCENTRIQUES AVEC
DIFFERENTES TEMPERATURES AUX EXTREMITES

Reésume—On étudie analytiquement I'écoulement de convection naturelle dans un long espace horizontal
a section droite annulaire, isolé¢ latéralement et avec les deux extrémités maintenues a différentes
températures. Les distributions de vitesse et de température dans la portion centrale du volume sont
déterminées par une analyse de perturbation en nombre de Rayleigh. Le nombre de Nusselt pour le
transfert axial de chaleur dépend du nombre de Rayleigh, les deux rapports de forme r,/r, et L/r, (rayon
intérieur/rayon externe et longueur/rayon externe) et aussi des propriétés conductrices des deux parois
cylindrigues. On considére le cas ou le volume est rempli par un fluide incompressible et le cas ou il est
rempli par un matériau poreux saturé par un fluide incompressible. La limite r; - r, est considérée pour
obtenir des expressions correspondent au champs de vitesse et de température entre deux plahs verticaux
soumis & une différence de température dans la direction horizontale paralléle aux plans.

FREIE KONVEKTION IN EINEM WAAGERECHTEN RAUM, DER
DURCH ZWEI KONZENTRISCHE ZYLINDER MIT UNTERSCHIEDLICHEN
ENDTEMPERATUREN BEGRENZT IST

Zusammenfassung—Es wurde eine analytische Untersuchung der durch die Schwerkraft induzierten
Strémung in einem langen, waagerechten Raum mit ringfdrmigem Querschnitt durchgefiihrt. Der Raum
ist seitlich isoliert und wird an beiden Enden auf unterschiedlichen Temperaturen gehalten. Die
Geschwindigkeits- und Temperaturverteilung im mittleren Teil des Raumes wurde aus einer
Stérungsanalyse mit der Rayleigh-Zahl abgeleitet. Es zeigte sich, da die Nusselt—Zahl fiir den axialen
Wiirmetransport von folgenden Parametern abhing: der Rayleigh-Zahl, den Seitenverhiltnissen r;/r, und
L/r, (innerer Radius/duBerer Radius und Linge/duBerer Radius) und von den Leitungseigenschaften der
zwei zylindrischen Winde. Die Untersuchung wurde den Fall durchgefiihrt, bei dem der waagerechte
Raum von einem inkompressiblen Fluid erfillt ist, und fiir den Fall, bei dem der Raum von einem
pordsen, mit einem inkompressiblen Fluid gesdttigten Material erfiillt ist. SchlieBlich wurde der Grenzfall
r;—r, benutzt, um Beziehungen fiir die Stromung und die Temperaturverteilung zwischen zwei
senkrechten Platten abzuleiten, bei denen eine endliche Temperaturdifferenz in waagerechter Richtung,
parallel zu den Platten, vorleigt.

ECTECTBEHHAS KOHBEKIIHUS B T'OPU3OHTAJILHON OBJIACTH, OTPAHUYEHHOM
ABYMS KOHLEHTPHYECKHUMH LHIIUHAPAMH C PA3JIMYHBIMH
TEMIIEPATYPAMHU HA TOPLAX

Annoraums — [1poBeieHO aHATHTHYECKOE MCCJIEOBAHHE TEYEHHSA, BLI3BIBAEMOrO CHJIAMH TAXECTH, B
IUTHHHOM TOPH30HTaJbHOM H30JIHPOBAHHOM KOJIBLEBOM KaHajle C Pa3jiHYHLIMH TEMNEpaTYpaMH Ha
topuax. C noMowpio METOAa BO3MYLIeHHH 1m0 4ucay Penes monyveHO paclpefiesieHHE CKOPOCTH M
TEMNEPATYpPsl B HEHTpPanbHOH 4acTH kaHana. Iloka3ano, 4ro 4ncio HyccenbTa IS akCHAJIbBHOTO
NEpeHoca Temia 3aBHCHT OT YHCJIa Pesles, BeTHUHHLI OTHOUIEHHS BHYTPEHHErO PAIHYCA #; K BHELIHEMY
paaMycy ro H OTHOWCHHA UIMHB L K BHEIIHEMY paauycy ro, a4 Takke OT TeNIONPOBOXHOCTH
CTEHOK IIWTHHAPOB. AHAaJTH3 NPOBEJCH JUIA CJIy4Yas, KOrfa rOpH3OHTAJIbHBIN KAHA 3ANI0NHEH HECKHMa-
€MOii JKHMIKOCTBIO, H Cly4as, KOTAA KaHal 3aNoNHEH NOPHCTHIM MAaTEpHallOM, HACHILEHHHIM He-
ckumaemoil xuakocTeio. HakoHell, pH BbiBOAE BHIPaXeHMil JUIA MoneH TEYeHHAs H TEMNEPATyphl
MEXIy TOPLUAMH UWIMHIPOB NPH HAJHYHA CYMMapHOiHl pa3HOCTH TEMNEpPaTYpP B TOPH3OHTAJILHOM
HanpaBJicHHH, NapalIebHOM TOPLAM, HCIIONb30BAJICA [IPenen 7; — rq.
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