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Abstract-The gravity-induced flow in a long horizontal space of annular cross-section insulated laterally 
and with the two ends maintained at different temperatures was studied analytically. The velocity and 
temperature distribution in the central portion of the space was derived based on a perturbation analysis 
in the Rayleigh number. The Nusselt number for axial heat transfer was shown to depend on the Rayleigh 
number, the two geometric aspect ratios ri!ro and L/r0 (inner radius~outer radius and length/outer radius) 
plus the conducting properties of the two cylindrical walls. The analysis was performed for the case where 
the horizontal space is filled with incompressible fluid and the case where the space is filled with a porous 
material saturated with an incompressible fluid. The limit ri + rO was used finally to derive expressions 
for the flow and temperature fields between two vertical planes subjected to a net temperature difference 

in the horizontal direction parallel to the planes. 

NOMENCLATURE 

a_ lra,, constants, equation (23); 

bi.o, wall thickness [m] ; 
c- 1,c1, constants, equation (49); 

.fl.V,T? functions, equations (51), (52) 
and (56-59); 

Fu,l;,w.~~ functions, equations (25), (26), 
(29) and (36-38); 
gravitational acceleration [m/s21 ; 
half-height of vertical walls, Fig. 5 ; 
thermal conductivity of incompressible 
fluid or saturated porous medium; 

ki,o, thermal conductivity of cylindrical walls; 

K permeability [m’] ; 
K,,KI, constants, equations (17) and (46); 
Nli, 

p, 
Pr, 
QY 
r, 
ri 0, 

R’i.09 
Ru, 
L 
T, 
AT, 
w,w, 

X, 

Y, 

-Nusselt numb&, equation (27); 
pressure, equation (7); 
Prandtl number, v/a; 
axial heat transfer rate [W] ; 
radial position, equation (4a); 
radii of concentric cylinders; 
wall thermal resistance parameter, 
equations ( 12a,b) ; 
Rayleigh number, equations (9) and (42); 
spacing between vertical walls [m] ; 
temperature, equation (6); 
end-to-end tem~rature difference; 
velocity components, equation (5) and Fig. 
1; 
horizqntal (lateral) coordinate, equation 
(32) and Fig. 5 ; 
vertical coordinate, equation (33) and Fig. 
5; 

2, axial coordinate, equation (4b) and Figs. 1 
and 5; 

( I*> dimensional quantities; 

V2, Laplacian operator in cylindrical 
%oordinates, 

82 la 1 a* t72 

$?+;$+S;li.s+?* oz 

Greek symbols 

a, thermal diffusivity of incompressible fiuid 
or saturated porous medium ,[m2/s] ; 

/I* coefficient of volumetric thermal expansion 

I%-‘]; 
6, annulus thickness ratio, (rO -ri)/rO ; 
6 tangential direction, Fig. 1 ; 

P9 viscosity [Kg/(ms)] ; 
V, kinematic viscosity [m’/s] ; 

P. radii ratio ri/ro; 

P1 density [kg/m’]. 

Subscripts 

I, inner radius; 

0, outer radius; 
0,1,2, zeroth, first, second order approximation. 

INTRODUCTION 

NATURAL convection heat transfer in insulated 
horizontal conduits subjected to an end-to-end 
temperature difference has only recently come into 
focus. The different end temperatures produce a 
horizontal counterflow pattern in which colder fluid 
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flows along the bottom of the conduit and warmer 
Ruid flows in the opposite direction along the top. 
Hong [I] studied numerically the effect of this 
counterflow on the temperature distribution and 
concentration of thermal stresses in the conducting 
wall of round pipes. Bejan and Tien [:2] studied the 
same phenomenon analytically by means of a 
perturbation analysis valid for small Rayleigh num- 
bers. They showed that as the Raytcigh number 
increases the axial counterflow in round pipes is also 
accompanied by a secondary flow composed of 
spiraling eddies in each quadrant of the pipe cross- 
section, A similar flow pattern prevails in a horizon- 
tal cylinder filled with a porous medium subjected to 
an end-to-end temperature difference [3]. 

In an earlier three-paper sequence, Cormack et ai. 
[4,5] and Imberger [6] studied the natural con- 
vection in a slender two-dimensional cavity with 
differently heated end walls. Their work was aimed at 
describing the spreading of thermal polution through 
estuaries and other shallow waters, Bejan and Tien 
[7] proposed an integral method to account for the 
flow in the vicinity of open or closed ends of parallel- 
plate horizontal channels with different end tempera- 
tures Bejan and Tien applied the same technique to 
the study of natural convection through horizontal 
porous layers with permeable or impermeable end- 
walls maintained at different temperatures [3]. 

The objective of this work is to study analytically 
the heat-transfer mechanism by natural convection 
through a long conduit of annular cross-section, 
subjected to an end-to-end temperature difference. 
This free connection phenomenon has applications 
in the study of thermal stresses in the walls of 
horizontal conduits of annular cross-section. Also, 
the horizontal heat leak induced by the free 
connection mechanism is a critical parameter in the 
design of cryogenic systems. 

In the first part of this article we consider the case 
of an incompressible fluid bounded by two horizon- 
tal cylinders. A perturbation analysis in the Rayleigh 
number as a small parameter leads to a set of 
asymptotic expressions for the velocity and the 
temperature field in the annular cross-section. The 
Nusselt number for ‘axial heat transfer is estimated, 
showing the effect of radii ratio ro/ri and the effect of 
thermal conduction through the two cylindrical 
walls. The limit ri -+ I’,, is finally used to derive the 
natural convection pattern in a parallelepiped with 
the height 1~ much greater than the horizontal 
thickness t. 

The second part of this paper deals with naturai 
convection through a porous medium bounded by 
two horizontal cylinders. Analytically. the problem is 
similar to the one treated in the first part. The 
velocity and temperature distributions and the 
Nusselt number for axial heat transfer through the 
porous medium are derived based on a perturbation 
analysis. Applying the limit F~+I’~, this solution is 
used to derive the horizontal convective pattern in a 
porous layer of rectangular cross-section with /I >> t. 

SPACE FILLED WtTH INCOMPRESSIBLE FLUID 

The annular space and its dimensions are shown 
on Fig. 1. The horizontal cylindrical surfaces are 
adiabatic. However, each cylinder is modeled as a 
conducting sheet of zero thickness, capable of 
conducting heat in the tangential and axial direc- 
tions. A net temperature difference A’T is maintained 
across the two ends of the annular space. 

FIG 1. Horizontal space bounded by concentric horizontal 
cylinders with different end temperatures. 

(a) For~ulut~o~r @the prub~e~ 
The equations governing conservation of mass. 

momentum and energy in the steady state are 

I _ u&i I c&+L1&i 2‘. 
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(24 

(2b) 

(2c) 

(3) 

The cylindrical coordinate system r,@,z is shown in 
Fig. 1. Equations (l)-(3) have been put into non- 
dimensional form by defining the following dimen- 
sionless variables. 

(r, z) = (r, -_)*:‘r,,, 

(u, L’, u’) = (u, c. w)*r,,ja, 

(40) 

(khc) 
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T = T*/dT, (6) 

P = P*&xp). (7) 

The asterisks denote the dimensional quantities of 
this problem. The temperature difference T* was 
assumed zero at z = 0. The fluid filling the annular 
space is incompressible, subject to the Boussinesq 
approximation by which density differences are due 
solely to temperature differences 

p = Gl -P(T* - To*)], (8) 

where subscript 0 denotes the properties of a 
reference state. The convective flow intensity is 
governed by the Rayleigh number defined as 

We are interested in determining the velocity field 
(u,v,rv) and the temperature field T by solving 
equations (l)-(3) subject to velocity and temperature 
boundary conditions along the walls of the annular 

space. In the radial direction, the boundary condi- 
tions are 

(u,~,tt) = 0, at r = p,f, (lOa,b) 

aZT 1 c?‘T dT 
a,2+--y= -Ridv, at r=p, 

P 80 
(1 la) 

a=T d2T aT 
~r~+z=R,z, at r=L S lb) 

where p = ri/rO. Equations (Ila,b) are the tempera- 
ture boundary conditions around the ‘concentric 
cylindrical surfaces. Parameters R,R, are the dimen- 
sionless thermal resistances of the two walls, 

W&b) 

where ki ,, is the wall conductivity and bi,o the wall 
radial thickness assumed much smaller than either ri 
or r,. 

As shown in all previous studies [l-7], in long 
horizontal spaces with different end temperatures the 
velocity field is independent of axial position over 
the central portion of the space (the core region). 
The effect of the two end-walls on the velocity field is 
restricted to two small segments of the long 
horizontal space located near the two ends. In what 
follows, we seek expressions for u,u,w,T in the core 
region only. The end-wall effect on the natural 
counterflow through the annular space will be 
discussed in the closing section of this paper. 

(b) The perturbation method 
An analytical solution to equations (1 t(3) is 

obtained by first eliminating the pressure terms 
among the three momentum equations (2a,b,c). This 
is done by differentiating (2a) with respect to 0 and z 
and combining the results with the partial derivatives 
of equations (2b,c) with respect to r. The resulting 

momentum conditions are 

(13) 

-; v2&C$_-:; 
[ 

x ~-+--+~~--_“_ ( au v au au v2 ” 

3r r ae az r il 

= RasinDz. 
a2 

(14) 

The perturbation method consists of developing 
u,v, w, T in power series in the Rayleigh number, 

(u,u,w,T) = (u,v,w,T),+Ra(u,v,w,T), 
+Ra’(u,u,tv,T),+... ~ (15) 

By introducing expressions (15) into equations (l), 
(13), (14) and (3) and identifying the coefficients of 
each power of Ra leads to an infinite set of equations 
which can be solved analytically. The method of 
solution for an annular space is identical to the one 
employed by Bejan and Tien [2] in analyzing the 
natural counterflow through long horizontal pipes. 
In fact, the round pipe solution corresponds to the 
special case p = 0 of the more general solution 
developed below. 

The zeroth order approximation to the velocity 
and tem~rature field describes the state of solid 
body conduction, 

(u,u,z)o = 0, (16) 

To = K,z+K,. (17) 

If Ra = 0, constants K,,K, are determined from the 
end temperature conditions T,(O) = 0 and T,(Ljr,) 
= 1 to yield 

K, = r,/L, K, = 0. (18) 

The first order approximation is 

(%Y)I = 0, (19) 

plus two equations for w, and Tj. 

& (V2w,) = K, sin 0, (20) 

V2T, = K,w,. (21) 
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The solution to equations (20) and (21) is 
straightforward [2] and, for brevity, the details are 

omitted. The resulting first order temperature and 
axial velocity distributions are 

wI =+K,sine 
[ 

1 
p2--(l+p2)r+r3 1 , (22) 

r 

TI =+K:sinfI 
1 

1 
a_,~+a,r+fp2rlnr 

r 

(23) 

Coefficients a- ,,ui represent complex algebraic ex- 

pressions in p, Ri, R, determined from substituting 

equation (23) into the temperature boundary con- 
ditions (1 la,b). 

The first order approximation to the velocity field 

reveals a horizontal counterflow caused by the 

different end temperatures. Figure 2 shows a series of 

axial velocity profiles along the vertical diameter of 

the circular cross-section for a range of values of p. 

FIG. 2. Axial velocity distribution along a vertical diameter 
in the core region. 

As the radii ratio approaches unity the axial 
counterflow decreases rapidly. The first order cor- 
rection to the temperature field, Ti, is symmetric 
about the horizontal diameter of the annulus. 
Warmer fluid occupies the top half of the annular 
cross-section, flowing towards the cold end. Figure 3 
shows the temperature distribution in the first 
quadrant for different ratios p in two extreme cases. 
The left column illustrates the case where both 
cylindrical surfaces are insulated, i.e. too thin to 
conduct heat appreciably (Ri, R, -+ x). The right 
column corresponds to the opposite case in which 
the two walls are infinitely conducting (Ri, R, = 0). 

Figure 3 shows how increasing the radii ratio p 
and/or reducing the thermal resistance of the two 
walls has the effect of equalizing the fluid tempera- 
ture in the cross-section, thus quenching the axial 
counterflow pattern. 

FIG. 3. Temperature distribution over the annulus in the 
core region. The numbers on the figure indicate the value of 

96T,/K:. 

We also notice that the isotherms of Fig. 3 are not 

horizontal. In fact, at a constant height, the regions 
closer to the vertical diameter are warmer than the 

regions neighboring the outer wall. The relative 

temperature difference gives rise to an eddy in each 

quadrant, clockwise in the first quadrant shown in 

Fig. 3. This secondary flow can be determined 

analytically by carrying out the perturbation analysis 
beyond the first order correction, equations (191 (22) 
and (23). The second order correction has the form 

(w. 7% = 0, (240) 

ua = Kf cos2QF,(r), (25) 

o2 = Ki sin 20F,(r), (26) 

where functions F,(r) and F,(r) are determined by 
solving the two equations (1) and (13). 

(c) Axial heat-trmwfer rate 

The purpose of the perturbation analysis pre- 
sented above is to permit estimation of the Nusselt 
number for axial heat transport through the annular 
space. If Q is the net axial heat-transfer rate in the 
negative z direction, the Nusselt number can be 
defined as 

Nu = 
Q 

n(1 -p’)r,kAT’ 
(27) 
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An energy flux analysis across any annular cross- 
section in the core region yields 

Nu = & [;’ jc: r;-wTjrdrd8 (28) 

Expression (28) can now be evaluated using the 
perturbation solution for w and T, 

where F, and F, stand for two functions describing 
the radial variation of wi and T,, equations (22) and 
(23). Since the secondary components w2 and T, are 
zero, equations (24a,b), their contribution to axial 
heat transport is zero. The integral appearing in the 
convection term of expression (29) is negative since, 
for a given r, F, and F, have opposite sign (see Figs. 
2 and 3). 

The convection contribution to the Nusselt num- 
ber depends on p, R, and R,; however, the complete 
expression showing this dependence is too lengthy to 
be reproduced here. We evaluated the Nusselt 
number in four limiting cases summarized on Fig. 4. 
The top curve shown in the figure corresponds to the 
case where both cylindrical walls are adiabatic (Ri, 
R, -+ co). If, in addition, p equals zero, expression 
(29) is greatly simplified, 

KfRd 
Nu=K,+p. 

23 040 
(30) 

Equation (30) serves as reference to the Nu curves of 
Fig. 4 and is identical to the Nusselt number result 
obtained by Bejan and Tien [2] for horizontal 
adiabatic pipes with different end temperatures. The 

FIG. 4. Nusselt number vs radii ratio p for horizontal FIG. 5. Horizontal channel bounded by two vertical plates 
annular space filled with incompressible fluid. with different end temperatures. 

bottom curve of Fig..4 shows the value of 23 040 (Nu 
-K1)/(K~RaZ) for annular spaces bounded by two 
isothermal cylinders. The two intermediate curves 
correspond to the case in which one of the cylinders 
is adiabatic and the other is isothermal. 

The convective part of the Nusselt number 
decreases sharply as the radii ratio approaches unity 
(see Fig. 4). The sharp decrease is due to the fact 
that, simultaneously, the axial velocity approaches 
zero and the temperature becomes isothermal over 
the cross-section. The heat-transfer rate is also 
reduced as one or both walls become more conduct- 
ing. The two intermediate curves approach one 
another when p -+ 1 since, in this limit, it makes IittIe 
or no difference if the adiabatic wali is on the outside 
or on the inside boundary of the annular cross- 
section. 

(d) Horizontal counterflow between two vertical 
pkztes 

As the difference t = r,, - ri becomes much smaller 
than r,, the two regions located in the vicinity of B 
= 0 and B = n in the annular space of Fig. 1 
resemble the space formed between two tall vertical 
plates, with the edges z* = 0, L kept at different 
temperatures. The velocity and temperature distri- 
bution between the two vertical walls with cor- 
rections up to terms of Ra’ can be derived 
immediately based on the perturbation solution 
obtained previously. For instance, applying the 
calculus of limits as p -+ 1, the axial velocity becomes 

where 

w = -fK,Ruyx@-x), (31) 

x=1-r, (32) 

1’ = 0 2 sin 0, (33) 

6 = t/h. (34) 

Everywhere in expressions (31)-(34), the h~f-height 
h replaces rO used’as length scaling factor until now. 
We find that at any y the axial velocity profile is 
parabolic. The axial velocity is zero over the horizontal 
midplane of the box formed by the two vertical walls. If 
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the box is closed at the top and bottom, the velocity is 
zero at y = + 1. Consequently, expression (31) 
overestimatestheaxialvelocitynearthetopandbottom 
walls, over vertical distances of the order oft. 

The temperature distribution is 

T = K,z+K, +$K:RayF,(x), (35) 

where F~(x.) depends on the conducting properties of 
the two vertical walls. For the extreme cases 
illustrated in Fig. 4, Fr assumes the following 
simpler forms: 

F f = %‘, both walls insulated, 24 061 

F, = +(6”r --26x3 +x4), 

both walls isothermal, (37) 

F, = f@” - 26x3 $x4), 

one wall insulated, the other isothermal. (38) 

These findings agree qualitatively with the isother- 
mal patterns shown in Fig. 3 for p = 0.8. 

Expressions (31) and (35) can finally be used to 
estimate the Nusselt number for axial heat transfer 
through the box shown in Fig. 5. The method 
follows identically the steps outlined in the preceding 
section and is not repeated here. 

SPACE FILLED WITH POROUS MEDIUM 

We will now examine the horizontal counterflow 
induced by different end temperatures when the 
annular space of Fig. 1 is filled with a porous 
medium. The permeability K is assumed uniform, 
independent of orientation. The medium is saturated 
with a quasi-incompressible fluid which. obeys the 
Boussinesq approximation, equation (8). The hori- 
zontal cylindrical surfaces are impermeable conduct- 
ing sheets characterized by resistances Ri, R, defined 
in equations (12a,b). 

As in the preceding section, the heat transfer 
between the annular space and its environment is 
assumed negligible, except over the two end plates 
maintained at constant but different tem~ratures. 

(a) Formulation qf the problem 
The analysis leading to expressions for the 

velocity, temperature and Nusselt number in the 
annular space follows the procedure presented in the 
preceding section. For this reason, many details will 
be skipped allowing us to focus on features charac- 
teristic to natural convection through porous media. 

Assuming that Darcy’s law applies, i.e. the 
Reynolds number based on pore diameter is less than 
one [S], the continuity, momentum and energy 
equations are 

dP 
u = -7r+ RnTsinB, (4Oa) 

I dP 
t’= -yz+RcrTcos@, 

SP 
,v = - -.... 

(‘_ ’ 

iiT D ?T c?T 
u---$--+~t’--=v~T. 

dr r %I 8: 

(‘fob) 

(4Oc) 

(41) 

The dimensionless variables appearing in the above 
equation, r, z, u, v, w, T and P have been defined in 
equations (4)-(7). The Rayleigh number for this 
problem contains the permeability K, 

Ra = gBr,?!! (42) 
@I’ 

We are again interested in the natural convection 
pattern in the core region, i.e. away from the two 
ends. The boundary conditions throughout the core 
region are expressed in equations (IO), (1 I ). 

(b) The perturbation method 
Eliminating the pressure terms between the three 

momentum equations yields 

a14 (? 
iie - iir (m) = R (43) 

&v 8T 
-- = RasinO---. 

r7r (72 
(44) 

The power series in Ru, expressions (151, are 
substitute into equations (39), (41), (43) and (44). 
Collecting the terms multiplying the same power of 
Ra provides the necessary set of equations for 
determining the successive corrections to the velocity 
and temperature field in the core region. The result 
is: 

zeroth order 

(M, 0, LV)e = 0, (45) 

To = K,z+K,; (46) 

first order 

(r&u), = 0, (47) 

u’t = -K,rsin@; (48) 

T, = Kfsin0 
c 

1 
c_,!+c,r-f 

i 
; (49) 

r 

second order 

(w, 7-f, = 0, (50) 

u2 = K:cos2~fl(r), (51) 

u1 = K: sin 261;.(r). (52) 

Coefficients c-r, c, appearing in equation (49) 
depend on p, R, R, and are determined by applying 
the temperature boundary conditions (1 la,b). Func- 
tions f,, J;. describing the secondary flow can be 
determined by solving the ordinary differential 
equations obtained from substituting u2, 11~ into 
equations (43) and (44). However, of the per- 
turbation solution presented above only the zeroth 
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and first order approximation contribute to the axial 

heat transport through the annular porous medium. 

As a first approximation, the axial temperature 

gradient constant K, equals r,/L. This value is 

expected to decrease steadily as Ra increases, 
depending also on whether the two end plates are 
permeable or not. 

FIG. 6. Nusselt number vs radii ratio p for horizontal annular 
space filled with saturated porous medium. 

(c) Axial heat-transfer rate 

The Nusselt number for axial heat transport was 

defined in equation (27). Substituting the per- 

turbation solution for w and T into equation (28) 
yields 

Nu = K, +K:Ra2[+c_ I +t(l +p2)c, 

-&l +p2+p4)]. (53) 

As mentioned previously, c- 1 and cl depend on the 

wall resistance parameters Ri, R,. Figure 6 shows the 
variation of Nu with the radii ratio p in four extreme 

cases regarding the conducting properties of the 
concentric cylinders. As reference we used the case of 
a round pipe (p = 0) with non-conducting wall, for 

which the Nusselt number becomes 

Nu = K, +&K:Ra’. (54) 

Comparing Fig. 6 with Fig. 4 we observe that, as ri 

-+ r,, the Nusselt number for the porous medium 
does not decrease as abruptly as for an annular 
space filled with incompressible fluid. There is a 
reason for this, namely, the narrowing of the annular 
space has no effect on the first order axial velocity 
which is independent of the shape of the vertical 
cross-section [see equation (48)]. If both cylindrical 
walls are non-conducting (Ri, R, -+ co), the Nusselt 

number increases as p + I; however, the axial heat- 

transfer rate Q decreases on account of the decreas- 

ing cross-sectional area, equation (27). 

(d) Horizontal counte$ow between two vertical 

plates 

We conclude the study of natural convection 

through a horizontal annular space filled with 

porous material by making again the observation 
that the perturbation solution derived in (b) above 
contains information relevant to the parallel plate 

geometry sketched in Fig. 5. Applying the calculus of 

limits as p + 1 and using transformations (32) and 
(33) we obtain the following expressions for the axial 

velocity and temperature pattern in a horizontal 

porous layer of rectangular cross-section (h >> t) : 

w = -K,Ray, 

T = K,z+K,+KfRa~f~(_x). 

(55) 

(56) 

As before, h replaces rO as a length scaling factor in 

the definitions of uj, z, J’, x and Ra. Function fr(x) 

depends on c- 1, ci as shown in expression (49). In 

the three limiting circumstances singled out through- 
out this study, jr is 

.f; = 1 -t&+$62 2 1, 

both walls insulated, (57) 

fT = ;x(s-x), 

both walls isothermal, (58) 

,fr = i(S’ -x2), 

one wall insulated, the other isothermal, (59) 

where 6 = t/h. One can finally combine equations 

(55) and (56) to estimate the net heat-transfer rate in 

the horizontal direction through the porous layer. 
The Nusselt number will depend on three para- 
meters, Ra, t/h and K, (or h/L). 

CONCLUDING REMARKS 

In order to understand the mechanism of natural 

convection heat transfer in long horizontal spaces 
with different end temperatures, we studied analyti- 
cally the natural counterflow in a space of annular 

cross section. Two situations have been considered, 

the case when the annular space is filled with an 

incompressible fluid and the case when the space is 
filled with a porous material saturated with an 

incompressible fluid. 
In both cases, perturbation analyses in the 

Rayleigh number led to expressions for the velocity 
and temperature distributions in the middle portion 
of the annular space. This is the core region situated 
at some distance away from the two ends. The 
primary flow caused by the different end tempera- 
tures consists of two horizontal streams in counter 
current flow, the warmer branch flowing towards the 
cold end through the upper half of the cross-section. 
The velocity and temperature field in the core region 
is similar to the one found in horizontal round pipes 
[l-31 and flat ducts (h << t) [3-71. 
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The Nusselt number for axial heat transfer was 
shown to depend on the Rayleigh number (Ra) plus 
two geometrical parameters, the radii ratio (p) and 

the axial temperature gradient constant (K,). The 

Nusselt number increases as both Ru and K, 
increase. It was shown that the axial heat-transfer 

rate decreases as one or both cylindrical walls 
become more conducting. 

The solution for convection in a horizontal 

annular space was placed in the limit ri + r,, to 

obtain closed form expressions for velocity and 

temperature between two vertical walls exposed 

horizontally to a finite temperature difference. The 

natural convection pattern in the geometry of Fig. 5 

was shown to depend on the Rayleigh number based 
on the vertical dimension (I?), the axial temperature 

gradient K 1 (of the order of /i/L) and the cross- 
section aspect ratio t/h. The vertical wall thermal 

conductance was shown to be an effective means of 

reducing the axial heat-transfer rate through the 
horizontal space. 

It is worth commenting on the axial temperature 

gradient constant K, which is a crucial element of 

the natural convection pattern discussed in this 

study. If the horizontal space is long (r,,/L cc I or 
h/L cc 1) the core region fills almost the entire space. 

If the Rayleigh number is moderate so that at any : 

the temperature difference between the upper (warm) 

stream and the lower (cold) stream is considerably 
smaller than the end-to-end AT, the zeroth order 

contribution T,(z) dominates the core temperature 

distribution. Under these circumstances the solid 

body conduction values for K,. K, shown in 

expression (18) are adequate. 
As the Rayleigh number increases, the temperature 

difference at any z increases causing a decrease in the 

bulk temperature gradient K,. We can no longer 
assume, as in what led to equation (18), that T = 0 
at:=OandT=l at-_=Lir,since,atany:,the 

temperature varies considerably across’ the annular 

cross-section. The functions K, (Ra, L/r,) and K, 

(Ru, L/r,,) can only be determined by solving the 

Navier-Stokes equations in the two end regions and 
matching the solution with the core solution pre- 

sented in this study. 
There are certain ways in which an end solution 

can be found. Studying the flow in horizontal 

rectangular cavities (flat ducts, h cc t), Cormack et ~11. 
[4] developed a perturbation solution in h/L for the 
flow around a square end. The solution, however, is 
prohibitively complex to be carried out analytically. 
A much more expedient analytical method was 
employed by Bejan and Tien [7] for the flow in the 
two end regions of the horizontal cavity studied by 
Cormack et al. [4,5] and Imberger [6]. The method 
consists of integrating the momentum and energy 
equations in the two end regions, using velocity and 
temperature profiles matching the core solution at 
the imaginary cross-sections where the end regions 
and the core region come in contact. The momentum 
and energy integral conditions prevailing in the two 

end regions provide the necessary information for 
estimating the unknown constants K I and K z, once 

Ra and the aspect ratio h,lL are specified. The 
integral method is quite flexible as shown by the 
authors who have also applied it to the flow through 

an open end (horizontal flat duct communicating 

with a large reservoir) [9] and to the flow near the 

end wall (permeable and impermeable) of a porous 

medium bounded by a horizontal cylinder [3]. 
An even simpler method which allows one to esti- 

mate the first correction in Ru and L/r, beyond the 

zeroth order solution for K ], K, of equation (18) is 

the pinned-core-solution approximation [7]. Accord- 

ing to this method, even when the temperature varies 

across the annulus, the coldest point in the z = 0 

cross-section approaches T = 0, whereas the war- 
mest point at z = L/r,, approaches T = 1. As shown 

in Fig. 3, depending on [I, R,, R,,, the temperature 
varies appreciably across the annulus. However, once 

p, Ri, R,, are specified, expressions (23) (35), (49) and 
(56) may be used to locate the points where the 
cross-section temperature is minimum and maxi- 
mum. Undoubtedly. the two points lie on the 

vertical diameter, the coldest in the lower half at Q = 

- n;‘2 and the warmest at 0 = n:2. Then, writing 

T,,i,,,Z = 0 = 0, (60) 

7;,:,,,,:r /,, = 1, (61) 

corresponds to pinning the core solution to the 

externally imposed temperature difference. Equations 
(60) and (61) provide a system for determining K, 

and K, as functions of Ra and L/r,. In the Ra + 0 

limit these findings will be identical to expression 

(18). 
It is appropriate to conclude this discussion with a 

comment regarding the domain in which the asym- 

ptotic results develoljed in this study are valid. From 
the mathematical formulation of the problem, the 
theory is strictly valid in the limit Ru + 0. Due to the 

algebraic complexity of the series solutions provided 
by the perturbation analysis in Ra small, only the 
first convective terms of two solutions (incompres- 
sible fluid, saturated porous medium) were derived. 
An approximate upper bound to the Rayleigh 
number for which the asymptotic solution applies 
can be obtained from the condition that the 

convective term must never exceed the conductive 
contribution in the make-up of the Nusselt number, 
equations (30) and (54). Thus, on an order of 
magnitude basis, we find 

O(Ra K 1 ) < 152, for incompressible fluid, (62) 

O(RaK,)< 3.7, for porous medium. (63) 

Since in the conduction dominated regime the axial 
temperature gradient parameter K 1 is of order t-,/L, 
equation (18), criterion (62,63), is expressed solely in 
terms of a modified Rayleigh number based on the 
physical gradient AT/L, namely Rut-,/L. This obser- 
vation suggests that the asymptotic results presented 
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in this article are also applicable in the limit r,/L -+ 0 
with Ra arbitrary but finite, such that the product 
Rar,/L obeys criterion (62,63). 
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CONVECTION NATURELLE DANS UN ESPACE HORIZONTAL 
LIMITE PAR DEUX CYLINDRES CONCENTRIOUES AVEC 

DIFFERENTES TEMPERATURES AUX EXTKEMITES 

R&m&On ttudie analytiquement 1’8coulement de convection naturelle dans un long espace horizontal 
B section droite annulaire, isoli: lattralement et avec les deux extrimites maintenues A diffkrentes 
temptratures. Les distributions de vitesse et de temperature dans la portion centrale du volume sont 
d&ermin&es par une analyse de perturbation en nombre de Rayleigh. Le nombre de Nusselt pour le 
transfert axial de chaleur dkpend du nombre de Rayleigh, les deux rapports de forme rJro et L/r, (rayon 
intCrieur/rayon externe et longueur/rayon externe) et aussi des proprittks conductrices des deux parois 
cylindriques. On considire le cas od le volume est rempli par un fluide incompressible et le cas oti il est 
rempli par un mattriau poreux saturi par un fluide incompressible. La limite ri + r0 est considtrCe pour 
obtenir des expressions correspondent au champs de vitesse et de tempirature entre deux plans verticaux 

soumis g une diffirence de tempkrature dans la direction horizontale parallkle aux plans. 

FREII? KONVEKTION IN EINEM WAAGERECHTEN RAUM, DER 
DURCH ZWEI KONZENTRISCHE ZYLINDER MIT UNTERSCHIEDLICHEN 

ENDTEMPERATUREN BEGRENZT IST 

Zusammenfassung-Es wurde eine analytische Untersuchung der durch die Schwerkraft induzierten 
StrGmung in einem langen, waagerechten Raum mit ringfiirmigem Querschnitt durchgefiihrt. Der Raum 
ist seitlich isoliert und wird an beiden Enden auf unterschiedlichen Temperaturen gehalten. Die 
Geschwindigkeits- und Temperaturverteilung im mittleren Teil des Raumes wurde aus einer 
StGrungsanalyse mit der Rayleigh-Zahl abgeleitet. Es zeigte sich, da5 die Nusselt-Zahl Fir den axialen 
Wgrmetransport von folgenden Parametern abhing: der Rayleigh-Zahl, den Seitenverhiiltnissen rdr,, und 
L/r, (innerer Radius/HuBerer Radius und Lgnge/iiuBerer Radius) und von den Leitungseigenschaften der 
zwei zylindrischen WPnde. Die Untersuchung wurde den Fall durchgefiihrt, bei dem der waagerechte 
Raum von einem inkompressiblen Fluid erftillt ist, und fiir den Fall, bei dem der Raum von einem 
poriisen, mit einem inkompressiblen Fluid gesiittigten Material erfiillt ist. SchlieBlich wurde der Grenzfall 
ri -+ r0 benutzt, urn Beziehungen fiir die Stramung und die Temperaturverteilung zwischen zwei 
senkrechten Platten abzuleiten, bei denen eine endliche Temperaturdifferenz in waagerechter Richtung, 

parallel zu den Platten, vorleigt. 

ECTECTBEHHAII KOHBEKUMI B I-OPMOHTAJIbHOfi OIiJIACTkf, OrPAHkirEHHOti 
ABYMIl KOH~EHTPINECKl4MW 4BJIkIHflPAMM C PA3JlW4HbIMkl 

TEMI-IEPATYPAMH HA TOPUAX 

AIIHO~~~I - IIposeAeHo aHanHTHsecnoe Hccnenosamie TeqexiwR, md3bmaeMoro cWnahui TnnrecTH, B 

JJJIHHHOM ~OPH30HTWIbHOM H3OnHpOBaHHOM KOnbIleBOM KaHUle C p3nH’iHblMH TCMIle~TypaMH Ha 

TOPWX. c IIOMOlQblO MeTOAt B03MyUeHHi-i II0 qHCny PeJICK IlOnyW’HO PiWZII~lWJIeHHe CKOPOCTH H 

TeMnepZ3TypbJ B UeHT~JIbHOfi WCTH KaHElJla. nOKiWH0, YTO SHwlO HyccenbTa AJlK ZlKCHiUlbHO~O 

IlepeHOca Tema 3aBHCHT OT qHcna Penen, BeJlmDIHHbl orriomeimn BHyTPeHHeTO pasiyca ri I BHeulHeMy 

PAHyCy ro H OTHOlUeHKIl AJlHHbI L K BHeUIHeMy MHyCy r ,,, B TaKYe OT TeIlnOll~BOAHOCTH 

CTeHOK IWJIHHA~B. fiHiUlH3 IlpOBeAeH .ilJlR Cny’ElK, KOrAa TOPH30HTiUbHbIfi lcaIiZlJl 3anOnHeH HSWIMB- 

eMOii lKlf!JKOCTbIO, H CnyWJl, KO,-L&3 KaHZiJl 3a,,OnHeH IIOPHCTblM MaTe,,H&IOM, HaCb,“,eHHbIM He- 

crmtaehtoii IYH~KOCT~K). HaKOHen, npH nhmone eupaxeerdi arm nonefi TeeseHmi H TeMnepaTypbl 

MeHUly TOPUaMH UHJlHli~pOB IlpH HUH’iHH CyMMapH0i-i PSHOCTH TeMlIepTyp B TOPH30HTUlbHOM 

HallpUSneHHH, nap&3JlJleJtbHOM TOpUaM, HCIcnOnb3OBiUICI IlPeJ’&?Jl r, + ro. 
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